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SOME RECENT RESULTS IN THE PROBLEM OF THREE BODIES*
H. E. BUCHANAN, Tulane University

1. Introduction. The classical mechanics is not so much in vogue nowadays
as it was some years ago. The study of quantum mechanics and the theory of
relativity have claimed the major part of the attention of mathematical physi-
cists and astronomers, but the Newtonian mechanics has by no means been
completely neglected. The famous problem of three bodies has received a share
of attention, and some interesting results have been obtained in the last ten
years. I shall endeavor to recount some of these results in so far as they relate
to the problem of three finite masses.

2. A brief survey of earlier results. To give a background to the questions
taken up later, let us first summarize briefly certain earlier work on the three
body problem.

The problem of three bodies can be stated very simply. Given three rigid
spherical bodies, having masses, m1, m., and m;, homogeneous in concentric
layers, subject to no forces except their own attractions under the Newtonian
law of gravitation. Let them be in arbitrary positions and moving with arbitrary
velocities at any time, . We wish to find the orbit each will trace and the posi-
tion of each in its orbit at any future time.

The first serious attack on the three body problem dates back to Newton.
He gave general theorems on the motion of the center of mass, and the first
discussion of perturbations, in Book I, Section XI of the Principia, which was
published in 1687, just two hundred and fifty years ago. From Newton to the
present year the list of those who have contributed something toward the solu-
tion of the three body problem contains the names of many of the world’s most
famous mathematicians. Among them are: Euler, Lagrange, Laplace, Jacobi,
Gauss, Poincaré, Hill, F. R. Moulton, Levi-Civita, and Sundman.

The first particular solutions of the problem of three bodies were found by
Lagrange in 1772 [1]. These are the celebrated straight line and equilateral tri-
angle solutions. In the straight line solutions the bodies always remain on a
straight line and revolve with uniform angular velocity in circles or ellipses
about their common center of mass. In the equilateral triangle case they remain
at the vertices of an equilateral triangle which rotates uniformly about the
center of mass. The size of the triangle may change as it rotates so that each

body may describe an ellipse with a focus at the center of mass of the three
bodies.

3. Rotating axes. The fact that in each of these particular Lagrangian solu-
tions the bodies may move in circles with constant angular velocity probably
suggested to later writers that the positions of members of the system might

* Presented for the Slaﬁght Memorial Volume of the MONTHLY. Read at the Duke University
meeting of the Association on January 1, 1937,
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well be given by reference to a set of axes rotating with uniform angular veloc-
ity. If the rectangular coérdinates &;, #;, {; be transformed by the equations

£; = £; cos wt — 7; sin wi,

f; = &; sin wt 4 n; cos wi,

i = ¢,

w being the angular velocity, we have the following eighteenth order system of
differential equations:

(—iié_z — 2w dﬂi = X%(Eh Niy §1)7
di? dt
1 s 2w o = Vi, i, £4),
di? dit
az;
Fri Zi(&s, mi, $2), (i=1,2,3),

where the center of gravity is at the origin and where X;, V;, Z; are functions
of gi» Niy g‘i-

4. Solutions and integrals. Before we proceed further we should make clear
the meanings of the terms “solution” and “integral.” Suppose that at any in-
stant of time, 4o, it is known that £;=a;, 19:=0bs, {s=c;, d&;/dt=d;, dn;/dt=e;,
dts/dt=f; i=1, 2, 3. Then by a solution of equations (1) we shall mean a set of
equations expressing £;, 7;, {; and their derivatives as functions of ¢, satisfying

equations (1) identically in ¢ and reducing to &;=ay, - - -, d¢:/dt=f;, (i=1, 2, 3),
at t=lfo.
The function, F(§;, ns, - - -, d¢i/dt, t), is an integral of (1) if it reduces to a

constant for every value of ¢ when any solution of (1) is substituted for the varia-
bles.

5. Integrals of equations (1). Equations (1) have 10 known integrals. These
and the theorems to which they lead were known to Euler. At the present time
it seems highly probable that there are no more integrals of a simple type.
Bruns [2] and Poincaré [3] have made important contributions in this connec-
tion. Six of these integrals are linear functions of £;, 7;, and ¢;, and their deriva-
tives. They can be used to eliminate &, 7,2, and {» and thus reduce the order of
the system to the 12th. We shall suppose that this has been done.

6. Particular solutions. Equations (1) are satisfied by & =a; 5:=¢:;=0,
which requires that the three bodies remain on the &;-axis. They can also be
satisfied by £&;=a;, n;="0;, {;=0, where (a;, b;) are the codrdinates of the vertices
of an equilateral triangle in the £;7;-plane.

This is an easier way of getting the straight line and triangle solutions than
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the method of Lagrange, but it has the disadvantage of not giving the elliptical
orbits.

Obviously one important question which we may ask is whether or not these
Lagrangian positions are stable; that is, if three bodies, large or small, should
ever be found approximately in the proper positions on a straight line with
proper velocities would the system oscillate near these positions for a consider-
able time or would it rapidly break up. Liouville, in 1845, answered this question
for the case in which the three bodies are the sun, the earth, and the moon, as-
sumed placed in the straight line positions; he showed that the position was un-
stable.

7. Stability of the straight line solutions. The method of determining the
stability is as follows: In equations (1) let £&;=a;4x;, 7:=7v4, {s=2;, then expand
the right members as power series in x;, ¥;, and 2;. Drop all terms except the
linear ones from the right members. The resulting system of linear, homogene-
ous differential equations are called the equations of variation. The z; equations
happen to be independent of the x; and y; equations in all the cases we shall
consider except one which will be mentioned at the proper time. We have, then,
for (1=1, 2, 3),

d2x¢ dyz
— 2w ;t— = A, + Aixs + Bayr + Bisys,

@ dt?
dzyi + 2w ﬁc—z = Cux1 + Cisxs 4 Dilyl -+ Diayz,
dt? dt
dzzi
3) ) = Euz1 + Eiszs.

These equations may be solved by setting x; = KM, y;= LM, 3,= M. In order
that the resulting equations (2) may have a solution different from K;=L,;=0,
it is necessary that their determinant vanish. This gives the following equations
for determining \:

)\Z“Au, —A13, - 2w)\—Bu, — B3
— 4s1, A2 — Ass, — B3, — 2w\ — Bg;
4) =0,
20N — Cy1, — Cis, A — Dy, — Dy
— Csi, 20N — Css, — D3, A2 — Dy
(5) A

Equation (4) is of the eighth degree in N, while (5) is a quadratic in A2
Liouville [4] found one real root for equation (4). This gave rise to terms of the
type x;=K", y;=L,", where % is real and positive; and hence each of the
codrdinates increases without limit as ¢ increases. He accordingly remarked that
if the creator had placed the Moon at one of these straight line positions with
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reference to the Earth and Sun it would not have stayed there on account of the
perturbations of the other planets.

If Liouville had been able to find all the values of N he would have found
A=0,0, +iw, +1p1, L ps, from equation (4) and A = *iw, +4v, from equation (5),
where p1, ps, and v are real numbers.

8. Stability of the equilateral triangle positions. The characteristic equation
for the equilateral triangle positions can be set up in a similar manner. Again
the z; equations are independent of x; and y; equations so that the values of A
must be obtained from solving an eighth degree equation and a fourth degree
equation. All these values of A have been found [6]. If a certain condition on the
masses is satisfied, they are A=0, 0, +iw, t+iv, *ip, from the x; and y; equa-
tions, while A= + 4w from the 2; equation and A= +4w from the 2z; equation.
Hence the only non-periodic terms in the complete solution are those coming
from the double zero exponent. Hence the oscillations are of the type

®; = Aor + At + periodic terms,
v; = Bo1 4+ Bt + periodic terms,

2; = periodic terms.

If we exclude the possibility of incommensurability of the periods of the
periodic terms then two conditions are enough to insure periodicity, if these two
conditions are chosen to make 41; and By; vanish.

It may be well here to compare these results with the so-called restricted
problem of three bodies in which one of the masses is infinitesimal. In that case,
if a certain condition on the masses is satisfied, all the characteristic exponents
are pure imaginaries and apparently the equilateral triangle positions are stable.
Such a conclusion is not warranted, however, for there is no truly infinitesimal
body.

9. The Trojan planetoids. Returning to the problem of the finite masses, we
observe that the condition on the masses which must be satisfied in the equi-
lateral triangle case in order that all the characteristic exponents be zero or
purely imaginary, is

wt — 27(mime + myms 4+ mamsz) = 0.

If m, is the mass of the Sun, m; is the mass of Jupiter and m; is the mass of
one of the Trojan planetoids, the above condition is satisfied, but their position
is not stable on account of the terms A4 o;-+A41.;# which arise from the double zero
values of N. There are 10 such planetoids now known and for some years they
have been near the Trojan equilateral triangle points, five in the forward posi-
tion and five trailing sixty degrees behind the line of Jupiter and the Sun. One
cannot help but wonder whether, since none of the planetoids are exactly at the
equilateral triangle point, and since there are constant perturbations by the
other planets, they will not in time depart from those positions. There are several
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conjectures as to why they remain there. One possible explanation is that there
must be one of the largest accumulations of loose material in our solar system
near these points and these planetoids are embedded in this so that the actions
of the larger planets are nullified. Another possible explanation is that they are
inside a surface of zero relative velocity and cannot escape. One remembers that

it was in this way that Hill showed that our Moon cannot escape from the
Earth. Some of the surfaces of zero velocity near these triangle points are shaped
roughly like the adjacent figure. If a planetoid were inside such a surface it
could not escape but could vary quite considerably in its distance from the tri-
angle point.

10. Periodic orbits. The question arises as to whether or not there may be
special initial conditions for which there are periodic orbits near the straight
line and equilateral triangle positions. This problem was solved by F. R.
Moulton [7] and some of his students for an infinitesimal body. His results
have been extended to the case where all the bodies are finite in papers by
H. E. Buchanan which appeared in the American Journal in 1923, 1925, 1927,
and 1928 and to which reference has already been made, one type, in each case,
being the ellipses which Lagrange found.

So far we have mentioned only particular solutions of equations (1). These
equations have been solved in general by Sundman [8], who started from some
results of Levi-Civita and gave a complete formal solution in series convergent
for all real values of ¢. F. R. Moulton also outlines a method for obtaining a com-
plete formal solution in his book on Differential Equations [9]. Their work is
of the highest importance from a mathematical standpoint, but its practical
value from the point of view of the astronomer is not very great. Their solutions
give no properties of the motion, no shapes of the orbits, no proof of periodicity
or of non-periodicity and they have very little prospect of ever being applied.

11. The helium atom. Now we turn to another type of problem. In 1927,
U. Crudeli [10] published a twenty-page article on the stability of the equi-
lateral triangle positions in the so-called neutral helium atom. The helium atom
is made up of a central mass with a positive charge of 2¢ and two equal small
masses with charges of —e each. The equilateral triangle positions are quite
different from those of the ordinary three body problem. The triangle rotates
about its center of gravity but the nucleus and electrons move in circles whose
planes are perpendicular to the plane of the triangle. Crudeli investigated the
stability of these positions and found one real root of the characteristic equation,
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which was of eighteenth degree. His conclusion was that the positions were un-
stable. In 1931 and 1933 in two papers in this MoNTHLY [11] I discussed the
stability of the triangle and straight line positions for the helium atom after
showing that such particular solutions exist for finite values of the masses. In
both of these papers only the forces due to the electrical charges were considered.
All the characteristic exponents were found; they are of the form:

(a) in the triangle case, A\=0, 0, +iw, + (a+18), +iv, +ip;
(b) in the straight line case, A\=0, 0, 4w, +iv, +p, tio, *iw,

the last two coming from the 2; equations which are independent of the x;, ¥;
equations. Hence both positions are unstable.

12. The characteristic exponents. It is rather remarkable that the exponents
0, 0, +iw appear again in both cases. Their appearance in four different cases
leads one to suspect a common underlying reason. Poincaré showed, about forty
years ago, that the existence of an integral of equations (2), independent of ¢
and satisfying certain conditions on its partial derivatives, required that one
characteristic exponent be zero. There are two such integrals in the three body
problem and also two in the helium atom, so in all four cases one could predict
that the zeros must occur. This fact is not of much help in solving the character-
istic equation, for the lowest degree in A2 in any of the four problems is four.
The knowledge that there is a zero root in A? would reduce the degree to the
third and this is practically impossible to solve with the complicated coefficients
which occur.

In a paper which appeared in the Duke Journal [12] in 1935 it was proved
that if the equations of variation have an integral whose minimum period is
27r[ w then one characteristic exponent must be either 4w or —iw. There are
two such integrals in each case, hence the characteristic exponents 7w must
appear. This knowledge is sufficient to reduce the degree of the characteristic
equation to the second in most of the cases.

13. The generalized helium atom. The characteristic equations in the four
cases mentioned above had already been solved before the results of the paper
in the Duke Journal of December 1935 were known. However, two [13] interest-
ing applications have occurred since then. If, in the helium atom, we consider
the gravitational forces as well as the forces due to the electrical charge, then
there are straight line solutions and isosceles triangle solutions. The equations
of variation from these positions have four integrals of the same type as before.
Consequently the characteristic equations must have the roots 0, 0, and +iw.
Without this knowledge it would, I think, have been impossible to solve the
characteristic equation for these cases since the difficulty of the algebra is at
least double that for the four simpler cases. With these new results at hand the
characteristic exponents for these more complicated cases have been found and
the stability of the straight line and isosceles triangle positions for the general-
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ized helium atom have been completely discussed. One of the papers in which
this was done has not yet been published.*

14. Conclusion. A mathematician never needs to apologize for studying any
problem, however useless. The helium atom we have discussed has long ago
passed from the mind of the physicist as a possible explanation of the interior
mechanism of any atom. But the results of the above papers have recently been
used in studying the stability of certain positions in the problem of four bodies.
The positions in the four body problem to which I refer were established by
MacMillan and Bartky [14] in 1932. One position in the four body problem is
that in which the bodies are at the vertices of a square. When the equations of
variation from this position are set up, as indicated above, their characteristic
equation must have the four roots 0, 0, and +iw.

Many valuable contributions have not been mentioned because they did not
seem to be a part of the particular tale I have been telling. The problem of three
bodies is not yet solved as thoroughly and completely as we wish but after all
it is only about two hundred and fifty years old!
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KASNER’S INVARIANT AND TRIHORNOMETRY
GEORGE COMENETZ, St. John’s College

This paper contains a new proof of a theorem of Kasner on plane conformal
geometry. The theorem, it is shown at the end, holds not only in the plane but
on any curved surface. It follows that the theorems of “trihornometry” apply to
horn angles on any surface.

1. Introduction. Conformal geometry studies those properties of geometrical
objects which cannot be changed by any conformal transformation. A conformal
transformation can be defined as an analytic homeomorphism between a region

* Miss Adrienne Rayl solved this problem while a student in the author’s class in Celestial
Mechanics.
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